
BAPC 2021
Solutions presentation

October 31, 2021

BAPC 2021 October 31, 2021 1 / 24

A: Arm Coordination
Problem Author: Reinier Schmiermann

Problem: Given a circle, find the smallest square which encloses this circle.

Solution: simple arithmetic

(x , y)

r

Statistics: 94 submissions, 82 accepted, 0 unknown
BAPC 2021 October 31, 2021 2 / 24

A: Arm Coordination
Problem Author: Reinier Schmiermann

Problem: Given a circle, find the smallest square which encloses this circle.
Solution: simple arithmetic

(x , y)

r

(x + r , y + r)(x − r , y + r)

(x + r , y − r)(x − r , y − r)

Statistics: 94 submissions, 82 accepted, 0 unknown
BAPC 2021 October 31, 2021 2 / 24

B: BnPC
Problem Author: Harry Smit

Problem: increase attribute scores so that you maximize a certain score function.

First set all attributes to the lowest value they need to be to pass all the
challenges (if this is impossible, the maximum score is 0).
Improve your score by increasing an attribute by one. There are two cases:

If the attribute score equals a of the challenge requirements, you get points equal to
a times the new attribute score, plus the number of events that require a lower score
for that attribute.
Otherwise, spending a point here gives additional score equal to the number of
events that use this attribute.

You can only spend one point on the first case (per attribute).
Be greedy: sort these options and spend points until none are left.
If you ever run into the second case, spend all of your points there.
Runtime: O(n log n + l).

Statistics: 139 submissions, 8 accepted, 78 unknown
BAPC 2021 October 31, 2021 3 / 24

B: BnPC
Problem Author: Harry Smit

Problem: increase attribute scores so that you maximize a certain score function.
First set all attributes to the lowest value they need to be to pass all the
challenges (if this is impossible, the maximum score is 0).

Improve your score by increasing an attribute by one. There are two cases:
If the attribute score equals a of the challenge requirements, you get points equal to
a times the new attribute score, plus the number of events that require a lower score
for that attribute.
Otherwise, spending a point here gives additional score equal to the number of
events that use this attribute.

You can only spend one point on the first case (per attribute).
Be greedy: sort these options and spend points until none are left.
If you ever run into the second case, spend all of your points there.
Runtime: O(n log n + l).

Statistics: 139 submissions, 8 accepted, 78 unknown
BAPC 2021 October 31, 2021 3 / 24

B: BnPC
Problem Author: Harry Smit

Problem: increase attribute scores so that you maximize a certain score function.
First set all attributes to the lowest value they need to be to pass all the
challenges (if this is impossible, the maximum score is 0).
Improve your score by increasing an attribute by one. There are two cases:

If the attribute score equals a of the challenge requirements, you get points equal to
a times the new attribute score, plus the number of events that require a lower score
for that attribute.
Otherwise, spending a point here gives additional score equal to the number of
events that use this attribute.

You can only spend one point on the first case (per attribute).
Be greedy: sort these options and spend points until none are left.
If you ever run into the second case, spend all of your points there.
Runtime: O(n log n + l).

Statistics: 139 submissions, 8 accepted, 78 unknown
BAPC 2021 October 31, 2021 3 / 24

B: BnPC
Problem Author: Harry Smit

Problem: increase attribute scores so that you maximize a certain score function.
First set all attributes to the lowest value they need to be to pass all the
challenges (if this is impossible, the maximum score is 0).
Improve your score by increasing an attribute by one. There are two cases:

If the attribute score equals a of the challenge requirements, you get points equal to
a times the new attribute score, plus the number of events that require a lower score
for that attribute.
Otherwise, spending a point here gives additional score equal to the number of
events that use this attribute.

You can only spend one point on the first case (per attribute).

Be greedy: sort these options and spend points until none are left.
If you ever run into the second case, spend all of your points there.
Runtime: O(n log n + l).

Statistics: 139 submissions, 8 accepted, 78 unknown
BAPC 2021 October 31, 2021 3 / 24

B: BnPC
Problem Author: Harry Smit

Problem: increase attribute scores so that you maximize a certain score function.
First set all attributes to the lowest value they need to be to pass all the
challenges (if this is impossible, the maximum score is 0).
Improve your score by increasing an attribute by one. There are two cases:

If the attribute score equals a of the challenge requirements, you get points equal to
a times the new attribute score, plus the number of events that require a lower score
for that attribute.
Otherwise, spending a point here gives additional score equal to the number of
events that use this attribute.

You can only spend one point on the first case (per attribute).
Be greedy: sort these options and spend points until none are left.

If you ever run into the second case, spend all of your points there.
Runtime: O(n log n + l).

Statistics: 139 submissions, 8 accepted, 78 unknown
BAPC 2021 October 31, 2021 3 / 24

B: BnPC
Problem Author: Harry Smit

Problem: increase attribute scores so that you maximize a certain score function.
First set all attributes to the lowest value they need to be to pass all the
challenges (if this is impossible, the maximum score is 0).
Improve your score by increasing an attribute by one. There are two cases:

If the attribute score equals a of the challenge requirements, you get points equal to
a times the new attribute score, plus the number of events that require a lower score
for that attribute.
Otherwise, spending a point here gives additional score equal to the number of
events that use this attribute.

You can only spend one point on the first case (per attribute).
Be greedy: sort these options and spend points until none are left.
If you ever run into the second case, spend all of your points there.

Runtime: O(n log n + l).

Statistics: 139 submissions, 8 accepted, 78 unknown
BAPC 2021 October 31, 2021 3 / 24

B: BnPC
Problem Author: Harry Smit

Problem: increase attribute scores so that you maximize a certain score function.
First set all attributes to the lowest value they need to be to pass all the
challenges (if this is impossible, the maximum score is 0).
Improve your score by increasing an attribute by one. There are two cases:

If the attribute score equals a of the challenge requirements, you get points equal to
a times the new attribute score, plus the number of events that require a lower score
for that attribute.
Otherwise, spending a point here gives additional score equal to the number of
events that use this attribute.

You can only spend one point on the first case (per attribute).
Be greedy: sort these options and spend points until none are left.
If you ever run into the second case, spend all of your points there.
Runtime: O(n log n + l).

Statistics: 139 submissions, 8 accepted, 78 unknown
BAPC 2021 October 31, 2021 3 / 24

C: Cangaroo
Problem Author: Abe Wits

Problem: Given a n ×m grid with marked locations, what is the minimum
amount of 2× 2 cans needed to cover all marked locations?

Solution: Do DP and calculate what the minimal number of cans is needed if you
fill up the last r rows for a given can placement of the top row.
For calculating the next row, iterate over all rows that support a can placement
and take the best.

DP[row][C] =
{
|C|+ min

D supports C
DP[row− 1][D] if C covers locations,

∞ else.

Number of can placements is Fm+1, the (m + 1)th Fibonacci number.
Time complexity: O

(
n · F 2

m+1
)

= O (n · 3.3m) when using bitmasks.

Statistics: 11 submissions, 3 accepted, 8 unknown
BAPC 2021 October 31, 2021 4 / 24

C: Cangaroo
Problem Author: Abe Wits

Problem: Given a n ×m grid with marked locations, what is the minimum
amount of 2× 2 cans needed to cover all marked locations?
Solution: Do DP and calculate what the minimal number of cans is needed if you
fill up the last r rows for a given can placement of the top row.
For calculating the next row, iterate over all rows that support a can placement
and take the best.

DP[row][C] =
{
|C|+ min

D supports C
DP[row− 1][D] if C covers locations,

∞ else.

Number of can placements is Fm+1, the (m + 1)th Fibonacci number.
Time complexity: O

(
n · F 2

m+1
)

= O (n · 3.3m) when using bitmasks.

Statistics: 11 submissions, 3 accepted, 8 unknown
BAPC 2021 October 31, 2021 4 / 24

C: Cangaroo
Problem Author: Abe Wits

Problem: Given a n ×m grid with marked locations, what is the minimum
amount of 2× 2 cans needed to cover all marked locations?
Solution: Do DP and calculate what the minimal number of cans is needed if you
fill up the last r rows for a given can placement of the top row.
For calculating the next row, iterate over all rows that support a can placement
and take the best.

DP[row][C] =
{
|C|+ min

D supports C
DP[row− 1][D] if C covers locations,

∞ else.

Number of can placements is Fm+1, the (m + 1)th Fibonacci number.
Time complexity: O

(
n · F 2

m+1
)

= O (n · 3.3m) when using bitmasks.

Statistics: 11 submissions, 3 accepted, 8 unknown
BAPC 2021 October 31, 2021 4 / 24

C: Cangaroo
Problem Author: Abe Wits

Problem: Given a n ×m grid with marked locations, what is the minimum
amount of 2× 2 cans needed to cover all marked locations?
Solution: Do DP and calculate what the minimal number of cans is needed if you
fill up the last r rows for a given can placement of the top row.
For calculating the next row, iterate over all rows that support a can placement
and take the best.

DP[row][C] =
{
|C|+ min

D supports C
DP[row− 1][D] if C covers locations,

∞ else.

Number of can placements is Fm+1, the (m + 1)th Fibonacci number.
Time complexity: O

(
n · F 2

m+1
)

= O (n · 3.3m) when using bitmasks.
Statistics: 11 submissions, 3 accepted, 8 unknown

BAPC 2021 October 31, 2021 4 / 24

D: Decelerating Jump
Problem Author: Onno Berrevoets

Problem: Given a sequence of n integers p1, . . . , pn, find a subsequence
1 = pi1 < pi2 < · · · < pik = n such that the distance between consecutive
elements does not increase.

Cubic solution: Keep a DP table dp[position][speed], which is computed as

dp[i][s] = pi + max
k≥s

dp[i − k][k]

Quadratic solution: Loop over speed s from n − 1 to 1, keeping track of the
maximum score if you end in each cell with speed at least s. Then update all
positions i from 1 to n:

dp[i] = max(dp[i], pi + dp[i − s])

Statistics: 146 submissions, 38 accepted, 43 unknown
BAPC 2021 October 31, 2021 5 / 24

D: Decelerating Jump
Problem Author: Onno Berrevoets

Problem: Given a sequence of n integers p1, . . . , pn, find a subsequence
1 = pi1 < pi2 < · · · < pik = n such that the distance between consecutive
elements does not increase.
Cubic solution: Keep a DP table dp[position][speed], which is computed as

dp[i][s] = pi + max
k≥s

dp[i − k][k]

Quadratic solution: Loop over speed s from n − 1 to 1, keeping track of the
maximum score if you end in each cell with speed at least s. Then update all
positions i from 1 to n:

dp[i] = max(dp[i], pi + dp[i − s])

Statistics: 146 submissions, 38 accepted, 43 unknown
BAPC 2021 October 31, 2021 5 / 24

D: Decelerating Jump
Problem Author: Onno Berrevoets

Problem: Given a sequence of n integers p1, . . . , pn, find a subsequence
1 = pi1 < pi2 < · · · < pik = n such that the distance between consecutive
elements does not increase.
Cubic solution: Keep a DP table dp[position][speed], which is computed as

dp[i][s] = pi + max
k≥s

dp[i − k][k]

Quadratic solution: Loop over speed s from n − 1 to 1, keeping track of the
maximum score if you end in each cell with speed at least s. Then update all
positions i from 1 to n:

dp[i] = max(dp[i], pi + dp[i − s])

Statistics: 146 submissions, 38 accepted, 43 unknown
BAPC 2021 October 31, 2021 5 / 24

E: Evolutionary Excerpt
Problem Author: Ragnar Groot Koerkamp

Problem: Given two independent uniform random sequences over “ACTG” of
length n = 106, find a common subsequence of length at least 500 000.

Naive solution: run the Longest Common Subsequence algorithm. O(n2) is too
slow!
Greedy: if the front two characters are the same, take it. Otherwise, remove the
first character from the longer sequence. → length 400 000.

Statistics: 139 submissions, 13 accepted, 84 unknown

BAPC 2021 October 31, 2021 6 / 24

E: Evolutionary Excerpt
Problem Author: Ragnar Groot Koerkamp

Problem: Given two independent uniform random sequences over “ACTG” of
length n = 106, find a common subsequence of length at least 500 000.
Naive solution: run the Longest Common Subsequence algorithm. O(n2) is too
slow!

Greedy: if the front two characters are the same, take it. Otherwise, remove the
first character from the longer sequence. → length 400 000.

Statistics: 139 submissions, 13 accepted, 84 unknown

BAPC 2021 October 31, 2021 6 / 24

E: Evolutionary Excerpt
Problem Author: Ragnar Groot Koerkamp

Problem: Given two independent uniform random sequences over “ACTG” of
length n = 106, find a common subsequence of length at least 500 000.
Naive solution: run the Longest Common Subsequence algorithm. O(n2) is too
slow!
Greedy: if the front two characters are the same, take it. Otherwise, remove the
first character from the longer sequence. → length 400 000.

Statistics: 139 submissions, 13 accepted, 84 unknown

BAPC 2021 October 31, 2021 6 / 24

E: Evolutionary Excerpt
Problem Author: Ragnar Groot Koerkamp

Greedy, second attempt: Instead of only comparing the front characters, we can
compare the front character of each sequence with the first three or four
characters of the other sequence, and use the first match we find. → length
531 000.

LCS DP, but smarter: instead of computing the full n2 DP table, we can only
keep entries close to the diagonal. Keeping a diagonal of width k = 10 → length
624 000, O(nk).
Split the input in chunks of size k ≥ 7, and run LCS for each chunk. → O(nk),
length 502 000 for k = 7, length 530 000 for k = 10.
Probability of failure is less than 10−16 for k = 7, and less than 10−1000 from
k = 9 onward.

BAPC 2021 October 31, 2021 7 / 24

E: Evolutionary Excerpt
Problem Author: Ragnar Groot Koerkamp

Greedy, second attempt: Instead of only comparing the front characters, we can
compare the front character of each sequence with the first three or four
characters of the other sequence, and use the first match we find. → length
531 000.
LCS DP, but smarter: instead of computing the full n2 DP table, we can only
keep entries close to the diagonal. Keeping a diagonal of width k = 10 → length
624 000, O(nk).

Split the input in chunks of size k ≥ 7, and run LCS for each chunk. → O(nk),
length 502 000 for k = 7, length 530 000 for k = 10.
Probability of failure is less than 10−16 for k = 7, and less than 10−1000 from
k = 9 onward.

BAPC 2021 October 31, 2021 7 / 24

E: Evolutionary Excerpt
Problem Author: Ragnar Groot Koerkamp

Greedy, second attempt: Instead of only comparing the front characters, we can
compare the front character of each sequence with the first three or four
characters of the other sequence, and use the first match we find. → length
531 000.
LCS DP, but smarter: instead of computing the full n2 DP table, we can only
keep entries close to the diagonal. Keeping a diagonal of width k = 10 → length
624 000, O(nk).
Split the input in chunks of size k ≥ 7, and run LCS for each chunk. → O(nk),
length 502 000 for k = 7, length 530 000 for k = 10.
Probability of failure is less than 10−16 for k = 7, and less than 10−1000 from
k = 9 onward.

BAPC 2021 October 31, 2021 7 / 24

F: Fair Play
Problem Author: Robin Lee

Problem: decide if it is possible to pair up vectors so that the sum of each pair is
the same.

If this is possible, then the sum is equal to two times the average. Calculate this
average, and check if it is integer.
If it is, say it is (a, b), pair up the vectors one by one: for every vector (x , y) there
needs to be a vector (2a − x , 2b − y).
Make sure to check that (x , y) and (2a − x , 2b − y) occur equally often!
Runtime: O(n).

Statistics: 208 submissions, 66 accepted, 25 unknown

BAPC 2021 October 31, 2021 8 / 24

F: Fair Play
Problem Author: Robin Lee

Problem: decide if it is possible to pair up vectors so that the sum of each pair is
the same.
If this is possible, then the sum is equal to two times the average. Calculate this
average, and check if it is integer.

If it is, say it is (a, b), pair up the vectors one by one: for every vector (x , y) there
needs to be a vector (2a − x , 2b − y).
Make sure to check that (x , y) and (2a − x , 2b − y) occur equally often!
Runtime: O(n).

Statistics: 208 submissions, 66 accepted, 25 unknown

BAPC 2021 October 31, 2021 8 / 24

F: Fair Play
Problem Author: Robin Lee

Problem: decide if it is possible to pair up vectors so that the sum of each pair is
the same.
If this is possible, then the sum is equal to two times the average. Calculate this
average, and check if it is integer.
If it is, say it is (a, b), pair up the vectors one by one: for every vector (x , y) there
needs to be a vector (2a − x , 2b − y).

Make sure to check that (x , y) and (2a − x , 2b − y) occur equally often!
Runtime: O(n).

Statistics: 208 submissions, 66 accepted, 25 unknown

BAPC 2021 October 31, 2021 8 / 24

F: Fair Play
Problem Author: Robin Lee

Problem: decide if it is possible to pair up vectors so that the sum of each pair is
the same.
If this is possible, then the sum is equal to two times the average. Calculate this
average, and check if it is integer.
If it is, say it is (a, b), pair up the vectors one by one: for every vector (x , y) there
needs to be a vector (2a − x , 2b − y).
Make sure to check that (x , y) and (2a − x , 2b − y) occur equally often!

Runtime: O(n).

Statistics: 208 submissions, 66 accepted, 25 unknown

BAPC 2021 October 31, 2021 8 / 24

F: Fair Play
Problem Author: Robin Lee

Problem: decide if it is possible to pair up vectors so that the sum of each pair is
the same.
If this is possible, then the sum is equal to two times the average. Calculate this
average, and check if it is integer.
If it is, say it is (a, b), pair up the vectors one by one: for every vector (x , y) there
needs to be a vector (2a − x , 2b − y).
Make sure to check that (x , y) and (2a − x , 2b − y) occur equally often!
Runtime: O(n).

Statistics: 208 submissions, 66 accepted, 25 unknown

BAPC 2021 October 31, 2021 8 / 24

G: Gyrating Glyphs
Problem Author: Reinier Schmiermann

Problem: Reverse engineer the ≤ 20000 operators using ≤ 1400 queries:

fn(a0, . . . , an) := (. . . (((a0 op1 a1) op2 a2) op3 a3) . . . opn an) mod 109 + 7

First solve the problem for 15 operators with a single query 0, q1, . . . , q15.
Use this to find all operators in 20000/15 < 1400 queries.
Example with 30 operators:

Recover last 15 operators: 000 . . . 000︸ ︷︷ ︸
16

q1q2 . . . q15
??? . . .?? ??? . . .???

Query 1
Ops

+0 and ×1 do not change the query outcome.

Continue with the next 15 operators. 0q1 . . . q15 010...01
??? . . .?? + × + . . . + ×

Query 2
Ops

Statistics: 14 submissions, 0 accepted, 10 unknown
BAPC 2021 October 31, 2021 9 / 24

G: Gyrating Glyphs
Problem Author: Reinier Schmiermann

Problem: Reverse engineer the ≤ 20000 operators using ≤ 1400 queries:

fn(a0, . . . , an) := (. . . (((a0 op1 a1) op2 a2) op3 a3) . . . opn an) mod 109 + 7

First solve the problem for 15 operators with a single query 0, q1, . . . , q15.

Use this to find all operators in 20000/15 < 1400 queries.
Example with 30 operators:

Recover last 15 operators: 000 . . . 000︸ ︷︷ ︸
16

q1q2 . . . q15
??? . . .?? ??? . . .???

Query 1
Ops

+0 and ×1 do not change the query outcome.

Continue with the next 15 operators. 0q1 . . . q15 010...01
??? . . .?? + × + . . . + ×

Query 2
Ops

Statistics: 14 submissions, 0 accepted, 10 unknown
BAPC 2021 October 31, 2021 9 / 24

G: Gyrating Glyphs
Problem Author: Reinier Schmiermann

Problem: Reverse engineer the ≤ 20000 operators using ≤ 1400 queries:

fn(a0, . . . , an) := (. . . (((a0 op1 a1) op2 a2) op3 a3) . . . opn an) mod 109 + 7

First solve the problem for 15 operators with a single query 0, q1, . . . , q15.
Use this to find all operators in 20000/15 < 1400 queries.

Example with 30 operators:

Recover last 15 operators: 000 . . . 000︸ ︷︷ ︸
16

q1q2 . . . q15
??? . . .?? ??? . . .???

Query 1
Ops

+0 and ×1 do not change the query outcome.

Continue with the next 15 operators. 0q1 . . . q15 010...01
??? . . .?? + × + . . . + ×

Query 2
Ops

Statistics: 14 submissions, 0 accepted, 10 unknown
BAPC 2021 October 31, 2021 9 / 24

G: Gyrating Glyphs
Problem Author: Reinier Schmiermann

Problem: Reverse engineer the ≤ 20000 operators using ≤ 1400 queries:

fn(a0, . . . , an) := (. . . (((a0 op1 a1) op2 a2) op3 a3) . . . opn an) mod 109 + 7

First solve the problem for 15 operators with a single query 0, q1, . . . , q15.
Use this to find all operators in 20000/15 < 1400 queries.
Example with 30 operators:

Recover last 15 operators: 000 . . . 000︸ ︷︷ ︸
16

q1q2 . . . q15
??? . . .?? ??? . . .???

Query 1
Ops

+0 and ×1 do not change the query outcome.

Continue with the next 15 operators. 0q1 . . . q15 010...01
??? . . .?? + × + . . . + ×

Query 2
Ops

Statistics: 14 submissions, 0 accepted, 10 unknown
BAPC 2021 October 31, 2021 9 / 24

G: Gyrating Glyphs
Problem Author: Reinier Schmiermann

We consider the case with 15 operators.

Let 0, q1, . . . , q15 where qi is random in {1, . . . , 109 + 6}.
For all 215 possibilities for the 15 operators compute the query outcome.
If all outcomes are distinct (mod109 + 7) we have a lookup table.
If not, repeat with a new random query.

BAPC 2021 October 31, 2021 10 / 24

G: Gyrating Glyphs
Problem Author: Reinier Schmiermann

We consider the case with 15 operators.
Let 0, q1, . . . , q15 where qi is random in {1, . . . , 109 + 6}.

For all 215 possibilities for the 15 operators compute the query outcome.
If all outcomes are distinct (mod109 + 7) we have a lookup table.
If not, repeat with a new random query.

BAPC 2021 October 31, 2021 10 / 24

G: Gyrating Glyphs
Problem Author: Reinier Schmiermann

We consider the case with 15 operators.
Let 0, q1, . . . , q15 where qi is random in {1, . . . , 109 + 6}.
For all 215 possibilities for the 15 operators compute the query outcome.

If all outcomes are distinct (mod109 + 7) we have a lookup table.
If not, repeat with a new random query.

BAPC 2021 October 31, 2021 10 / 24

G: Gyrating Glyphs
Problem Author: Reinier Schmiermann

We consider the case with 15 operators.
Let 0, q1, . . . , q15 where qi is random in {1, . . . , 109 + 6}.
For all 215 possibilities for the 15 operators compute the query outcome.
If all outcomes are distinct (mod109 + 7) we have a lookup table.

If not, repeat with a new random query.

BAPC 2021 October 31, 2021 10 / 24

G: Gyrating Glyphs
Problem Author: Reinier Schmiermann

We consider the case with 15 operators.
Let 0, q1, . . . , q15 where qi is random in {1, . . . , 109 + 6}.
For all 215 possibilities for the 15 operators compute the query outcome.
If all outcomes are distinct (mod109 + 7) we have a lookup table.
If not, repeat with a new random query.

BAPC 2021 October 31, 2021 10 / 24

H: Hamiltooonian Hike
Problem Author: Jorke de Vlas

Problem: Find a hiking path that visits all cabins,
walking at most three trails every day.

Solution: A modified DFS, starting from an arbitrary cabin s.
Variant 1:

While descending, only stop at cabins that have odd distance to s.
While ascending, only stop at cabins that have even distance to s.

Variant 2:
While descending, only stop at a cabin c if either:

you have walked three trails since the last cabin you stopped at, or
you have already walked past all neighbouring cabins of c and need to ascend again.

Statistics: 28 submissions, 9 accepted, 8 unknown

BAPC 2021 October 31, 2021 11 / 24

H: Hamiltooonian Hike
Problem Author: Jorke de Vlas

Problem: Find a hiking path that visits all cabins,
walking at most three trails every day.

Solution: A modified DFS, starting from an arbitrary cabin s.

Variant 1:
While descending, only stop at cabins that have odd distance to s.
While ascending, only stop at cabins that have even distance to s.

Variant 2:
While descending, only stop at a cabin c if either:

you have walked three trails since the last cabin you stopped at, or
you have already walked past all neighbouring cabins of c and need to ascend again.

Statistics: 28 submissions, 9 accepted, 8 unknown

BAPC 2021 October 31, 2021 11 / 24

H: Hamiltooonian Hike
Problem Author: Jorke de Vlas

Problem: Find a hiking path that visits all cabins,
walking at most three trails every day.

Solution: A modified DFS, starting from an arbitrary cabin s.
Variant 1:

While descending, only stop at cabins that have odd distance to s.
While ascending, only stop at cabins that have even distance to s.

Variant 2:
While descending, only stop at a cabin c if either:

you have walked three trails since the last cabin you stopped at, or
you have already walked past all neighbouring cabins of c and need to ascend again.

Statistics: 28 submissions, 9 accepted, 8 unknown

BAPC 2021 October 31, 2021 11 / 24

H: Hamiltooonian Hike
Problem Author: Jorke de Vlas

Problem: Find a hiking path that visits all cabins,
walking at most three trails every day.

Solution: A modified DFS, starting from an arbitrary cabin s.
Variant 1:

While descending, only stop at cabins that have odd distance to s.
While ascending, only stop at cabins that have even distance to s.

Variant 2:
While descending, only stop at a cabin c if either:

you have walked three trails since the last cabin you stopped at, or
you have already walked past all neighbouring cabins of c and need to ascend again.

Statistics: 28 submissions, 9 accepted, 8 unknown

BAPC 2021 October 31, 2021 11 / 24

I: Implementation Irregularities
Problem Author: Ragnar Groot Koerkamp

Problem: Given a list of n ≤ 105 problems, the computer time ti needed to solve
each of them, and the time si each was solved, find the minimal number of
computers used.

Insight: If there are C computers and the team solves their kth problem after s
minutes, the total computer time available for the first k problems is C · s.
Sort the problems by solve time, discarding any unsolved problems.
For each k we must have

∑k
i=1 ti ≤ C · sk .

The answer C is the maximum of
(∑k

i=1 ti
)/

sk , rounded up.
Alternatively, you can binary search.

Statistics: 190 submissions, 52 accepted, 39 unknown

BAPC 2021 October 31, 2021 12 / 24

I: Implementation Irregularities
Problem Author: Ragnar Groot Koerkamp

Problem: Given a list of n ≤ 105 problems, the computer time ti needed to solve
each of them, and the time si each was solved, find the minimal number of
computers used.
Insight: If there are C computers and the team solves their kth problem after s
minutes, the total computer time available for the first k problems is C · s.

Sort the problems by solve time, discarding any unsolved problems.
For each k we must have

∑k
i=1 ti ≤ C · sk .

The answer C is the maximum of
(∑k

i=1 ti
)/

sk , rounded up.
Alternatively, you can binary search.

Statistics: 190 submissions, 52 accepted, 39 unknown

BAPC 2021 October 31, 2021 12 / 24

I: Implementation Irregularities
Problem Author: Ragnar Groot Koerkamp

Problem: Given a list of n ≤ 105 problems, the computer time ti needed to solve
each of them, and the time si each was solved, find the minimal number of
computers used.
Insight: If there are C computers and the team solves their kth problem after s
minutes, the total computer time available for the first k problems is C · s.
Sort the problems by solve time, discarding any unsolved problems.

For each k we must have
∑k

i=1 ti ≤ C · sk .
The answer C is the maximum of

(∑k
i=1 ti

)/
sk , rounded up.

Alternatively, you can binary search.

Statistics: 190 submissions, 52 accepted, 39 unknown

BAPC 2021 October 31, 2021 12 / 24

I: Implementation Irregularities
Problem Author: Ragnar Groot Koerkamp

Problem: Given a list of n ≤ 105 problems, the computer time ti needed to solve
each of them, and the time si each was solved, find the minimal number of
computers used.
Insight: If there are C computers and the team solves their kth problem after s
minutes, the total computer time available for the first k problems is C · s.
Sort the problems by solve time, discarding any unsolved problems.
For each k we must have

∑k
i=1 ti ≤ C · sk .

The answer C is the maximum of
(∑k

i=1 ti
)/

sk , rounded up.
Alternatively, you can binary search.

Statistics: 190 submissions, 52 accepted, 39 unknown

BAPC 2021 October 31, 2021 12 / 24

I: Implementation Irregularities
Problem Author: Ragnar Groot Koerkamp

Problem: Given a list of n ≤ 105 problems, the computer time ti needed to solve
each of them, and the time si each was solved, find the minimal number of
computers used.
Insight: If there are C computers and the team solves their kth problem after s
minutes, the total computer time available for the first k problems is C · s.
Sort the problems by solve time, discarding any unsolved problems.
For each k we must have

∑k
i=1 ti ≤ C · sk .

The answer C is the maximum of
(∑k

i=1 ti
)/

sk , rounded up.

Alternatively, you can binary search.

Statistics: 190 submissions, 52 accepted, 39 unknown

BAPC 2021 October 31, 2021 12 / 24

I: Implementation Irregularities
Problem Author: Ragnar Groot Koerkamp

Problem: Given a list of n ≤ 105 problems, the computer time ti needed to solve
each of them, and the time si each was solved, find the minimal number of
computers used.
Insight: If there are C computers and the team solves their kth problem after s
minutes, the total computer time available for the first k problems is C · s.
Sort the problems by solve time, discarding any unsolved problems.
For each k we must have

∑k
i=1 ti ≤ C · sk .

The answer C is the maximum of
(∑k

i=1 ti
)/

sk , rounded up.
Alternatively, you can binary search.

Statistics: 190 submissions, 52 accepted, 39 unknown

BAPC 2021 October 31, 2021 12 / 24

J: Jail or Joyride
Problem Author: Reinier Schmiermann

Problem: find the least distance that a police car needs to travel to catch a
group of teenagers on a graph, given that the teenagers flee as far away as
possible on every approach.

Observation 1: If the police can approach the teenagers via multiple edges, then
the teenagers can always reach every vertex in the graph.

In particular: the approach direction of the police does not matter.
The police should always take the shortest path.

Observation 2: If the police can approach the teenagers via only one edge, then
either the teenagers are in a leaf, or they are not as far away as possible from the
police.

Second case only happens at the start.
After this, the teenagers can always either reach the whole graph, or nothing at all.

Statistics: 5 submissions, 0 accepted, 2 unknown

BAPC 2021 October 31, 2021 13 / 24

J: Jail or Joyride
Problem Author: Reinier Schmiermann

Problem: find the least distance that a police car needs to travel to catch a
group of teenagers on a graph, given that the teenagers flee as far away as
possible on every approach.
Observation 1: If the police can approach the teenagers via multiple edges, then
the teenagers can always reach every vertex in the graph.

In particular: the approach direction of the police does not matter.
The police should always take the shortest path.

Observation 2: If the police can approach the teenagers via only one edge, then
either the teenagers are in a leaf, or they are not as far away as possible from the
police.

Second case only happens at the start.
After this, the teenagers can always either reach the whole graph, or nothing at all.

Statistics: 5 submissions, 0 accepted, 2 unknown

BAPC 2021 October 31, 2021 13 / 24

J: Jail or Joyride
Problem Author: Reinier Schmiermann

Problem: find the least distance that a police car needs to travel to catch a
group of teenagers on a graph, given that the teenagers flee as far away as
possible on every approach.
Observation 1: If the police can approach the teenagers via multiple edges, then
the teenagers can always reach every vertex in the graph.

In particular: the approach direction of the police does not matter.
The police should always take the shortest path.

Observation 2: If the police can approach the teenagers via only one edge, then
either the teenagers are in a leaf, or they are not as far away as possible from the
police.

Second case only happens at the start.
After this, the teenagers can always either reach the whole graph, or nothing at all.

Statistics: 5 submissions, 0 accepted, 2 unknown

BAPC 2021 October 31, 2021 13 / 24

J: Jail or Joyride
Problem Author: Reinier Schmiermann

The police always takes the shortest path to the teenagers.
After the first approach of the police, the teenagers can always either reach the
whole graph, or nothing.

Simulate the first approach of the police separately.
For every vertex which is not a leaf: find all vertices which are as far away as
possible (use APSP).
Use DFS on this new directed graph to compute for every vertex v the maximal
distance the police needs to travel after approaching the teenagers in v .

If there is a reachable cycle in this new graph, the police cannot catch the teenagers.

BAPC 2021 October 31, 2021 14 / 24

J: Jail or Joyride
Problem Author: Reinier Schmiermann

The police always takes the shortest path to the teenagers.
After the first approach of the police, the teenagers can always either reach the
whole graph, or nothing.
Simulate the first approach of the police separately.

For every vertex which is not a leaf: find all vertices which are as far away as
possible (use APSP).
Use DFS on this new directed graph to compute for every vertex v the maximal
distance the police needs to travel after approaching the teenagers in v .

If there is a reachable cycle in this new graph, the police cannot catch the teenagers.

BAPC 2021 October 31, 2021 14 / 24

J: Jail or Joyride
Problem Author: Reinier Schmiermann

The police always takes the shortest path to the teenagers.
After the first approach of the police, the teenagers can always either reach the
whole graph, or nothing.
Simulate the first approach of the police separately.
For every vertex which is not a leaf: find all vertices which are as far away as
possible (use APSP).

Use DFS on this new directed graph to compute for every vertex v the maximal
distance the police needs to travel after approaching the teenagers in v .

If there is a reachable cycle in this new graph, the police cannot catch the teenagers.

BAPC 2021 October 31, 2021 14 / 24

J: Jail or Joyride
Problem Author: Reinier Schmiermann

The police always takes the shortest path to the teenagers.
After the first approach of the police, the teenagers can always either reach the
whole graph, or nothing.
Simulate the first approach of the police separately.
For every vertex which is not a leaf: find all vertices which are as far away as
possible (use APSP).
Use DFS on this new directed graph to compute for every vertex v the maximal
distance the police needs to travel after approaching the teenagers in v .

If there is a reachable cycle in this new graph, the police cannot catch the teenagers.

BAPC 2021 October 31, 2021 14 / 24

K: Kinking Cables
Problem Author: Boas Kluiving

Problem: Connect opposite corners of a rectangle with a cable of length ` such
that

Line segments do not intersect.
The coordinate points of the path should not be too close (< 1) to each other.

Solution: Zig-zag and use binary search for the last point:

(0, 0)

(7, 5)

Statistics: 28 submissions, 2 accepted, 18 unknown
BAPC 2021 October 31, 2021 15 / 24

K: Kinking Cables
Problem Author: Boas Kluiving

Problem: Connect opposite corners of a rectangle with a cable of length ` such
that

Line segments do not intersect.
The coordinate points of the path should not be too close (< 1) to each other.

Solution: Zig-zag and use binary search for the last point:

(0, 0)

(7, 5)

Statistics: 28 submissions, 2 accepted, 18 unknown
BAPC 2021 October 31, 2021 15 / 24

K: Kinking Cables
Problem Author: Boas Kluiving

Problem: Connect opposite corners of a rectangle with a cable of length ` such
that

Line segments do not intersect.
The coordinate points of the path should not be too close (< 1) to each other.

Solution: Zig-zag and use binary search for the last point:

(0, 0)

(7, 5)

Statistics: 28 submissions, 2 accepted, 18 unknown
BAPC 2021 October 31, 2021 15 / 24

K: Kinking Cables
Problem Author: Boas Kluiving

Problem: Connect opposite corners of a rectangle with a cable of length ` such
that

Line segments do not intersect.
The coordinate points of the path should not be too close (< 1) to each other.

Solution: Zig-zag and use binary search for the last point:

(0, 0)

(7, 5)

Statistics: 28 submissions, 2 accepted, 18 unknown
BAPC 2021 October 31, 2021 15 / 24

K: Kinking Cables
Problem Author: Boas Kluiving

Problem: Connect opposite corners of a rectangle with a cable of length ` such
that

Line segments do not intersect.
The coordinate points of the path should not be too close (< 1) to each other.

Solution: Zig-zag and use binary search for the last point:

(0, 0)

(7, 5)

Statistics: 28 submissions, 2 accepted, 18 unknown
BAPC 2021 October 31, 2021 15 / 24

K: Kinking Cables
Problem Author: Boas Kluiving

Problem: Connect opposite corners of a rectangle with a cable of length ` such
that

Line segments do not intersect.
The coordinate points of the path should not be too close (< 1) to each other.

Solution: Zig-zag and use binary search for the last point:

(0, 0)

(7, 5)

Statistics: 28 submissions, 2 accepted, 18 unknown
BAPC 2021 October 31, 2021 15 / 24

K: Kinking Cables
Problem Author: Boas Kluiving

Problem: Connect opposite corners of a rectangle with a cable of length ` such
that

Line segments do not intersect.
The coordinate points of the path should not be too close (< 1) to each other.

Solution: Zig-zag and use binary search for the last point:

(0, 0)

(7, 5)

Statistics: 28 submissions, 2 accepted, 18 unknown
BAPC 2021 October 31, 2021 15 / 24

K: Kinking Cables
Problem Author: Boas Kluiving

Bonus slide: Honourable mention for team “print(math.tan(float(input())))”,
for creating a solution without any diagonal lines and just simple arithmetic
(which none of the jury members had thought of):

(0, 0)

(6, 8)

` = 37.5338494218

BAPC 2021 October 31, 2021 16 / 24

L: Lopsided Lineup
Problem Author: Jorke de Vlas

Problem: Split a group of people in two equally sized teams that are as unequally
matched as possible.

Although the question is about synergy, the solution is actually to take strong
players for the winning team.
Take the first n/2 players as the strong team. Then what is the difference in
scores?

Statistics: 12 submissions, 7 accepted, 3 unknown

BAPC 2021 October 31, 2021 17 / 24

L: Lopsided Lineup
Problem Author: Jorke de Vlas

Problem: Split a group of people in two equally sized teams that are as unequally
matched as possible.
Although the question is about synergy, the solution is actually to take strong
players for the winning team.

Take the first n/2 players as the strong team. Then what is the difference in
scores?

Statistics: 12 submissions, 7 accepted, 3 unknown

BAPC 2021 October 31, 2021 17 / 24

L: Lopsided Lineup
Problem Author: Jorke de Vlas

Problem: Split a group of people in two equally sized teams that are as unequally
matched as possible.
Although the question is about synergy, the solution is actually to take strong
players for the winning team.
Take the first n/2 players as the strong team. Then what is the difference in
scores?

Statistics: 12 submissions, 7 accepted, 3 unknown

BAPC 2021 October 31, 2021 17 / 24

L: Lopsided Lineup
Problem Author: Jorke de Vlas

Problem: Split a group of people in two equally sized teams that are as unequally
matched as possible.
Although the question is about synergy, the solution is actually to take strong
players for the winning team.
Take the first n/2 players as the strong team. Then what is the difference in
scores?

c =
S

W

score = 1
2(S −W)

Statistics: 12 submissions, 7 accepted, 3 unknown

BAPC 2021 October 31, 2021 17 / 24

L: Lopsided Lineup
Problem Author: Jorke de Vlas

Problem: Split a group of people in two equally sized teams that are as unequally
matched as possible.
Although the question is about synergy, the solution is actually to take strong
players for the winning team.
Take the first n/2 players as the strong team. Then what is the difference in
scores?

c =
S

X

X

W

score = 1
2(S −W)

Statistics: 12 submissions, 7 accepted, 3 unknown

BAPC 2021 October 31, 2021 17 / 24

L: Lopsided Lineup
Problem Author: Jorke de Vlas

Problem: Split a group of people in two equally sized teams that are as unequally
matched as possible.
Although the question is about synergy, the solution is actually to take strong
players for the winning team.
Take the first n/2 players as the strong team. Then what is the difference in
scores?

c =
S

X

X

W

score = 1
2((S+X)−(W +X))

Statistics: 12 submissions, 7 accepted, 3 unknown

BAPC 2021 October 31, 2021 17 / 24

L: Lopsided Lineup
Problem Author: Jorke de Vlas

Problem: Split a group of people in two equally sized teams that are as unequally
matched as possible.
Although the question is about synergy, the solution is actually to take strong
players for the winning team.
Take the first n/2 players as the strong team. Then what is the difference in
scores?

c =
S + X

W + X

score = 1
2((S+X)−(W +X))

Statistics: 12 submissions, 7 accepted, 3 unknown

BAPC 2021 October 31, 2021 17 / 24

L: Lopsided Lineup
Problem Author: Jorke de Vlas

c =
S + X

W + X

score = 1
2((S+X)−(W +X))

The score of each team is the sum of its players’ row sums.

If you take any other strong team, you can reorder the matrix c so that your
chosen team is the first n/2. That does not change the row sums!

BAPC 2021 October 31, 2021 18 / 24

L: Lopsided Lineup
Problem Author: Jorke de Vlas

c =
S + X

W + X

score = 1
2((S+X)−(W +X))

The score of each team is the sum of its players’ row sums.
If you take any other strong team, you can reorder the matrix c so that your
chosen team is the first n/2. That does not change the row sums!

BAPC 2021 October 31, 2021 18 / 24

L: Lopsided Lineup
Problem Author: Jorke de Vlas

Solution: for each player compute its strength (i.e. the sum of its row). Take the
n/2 strongest players for the strong team, and the others for the weak team.
Complexity: O(n2).

BAPC 2021 October 31, 2021 19 / 24

Language stats

c cpp java kotlin python3
0

100

Accepted
Wrong Answer
Time Limit
Runtime Error
Pending

BAPC 2021 October 31, 2021 20 / 24

Some stats

917 commits, of which 507 for the main contest
693 secret test cases (last year: 425) (≈ 58 per problem!)
177 jury solutions (last year: 204)
The minimum1 number of lines the jury needed to solve all problems is

2 + 15 + 15 + 6 + 5 + 5 + 14 + 12 + 5 + 26 + 8 + 2 = 115

On average 9.6 lines per problem, up from 7.5 in the preliminaries

1Most jury members do enjoy a good code golfing competition!
BAPC 2021 October 31, 2021 21 / 24

Thanks to the Proofreaders!

Jaap Eldering
Nicky Gerritsen
Mart Pluijmaekers
Michael Vasseur
Kevin Verbeek

BAPC 2021 October 31, 2021 22 / 24

The Jury

Boas Kluiving
Erik Baalhuis
Freek Henstra
Harry Smit
Joey Haas

Jorke de Vlas
Ludo Pulles
Maarten Sijm
Mees de Vries
Ragnar Groot Koerkamp

Reinier Schmiermann
Robin Lee
Ruben Brokkelkamp
Timon Knigge
Wessel van Woerden

BAPC 2021 October 31, 2021 23 / 24

Thanks to the Sponsors!

BAPC 2021 October 31, 2021 24 / 24

